$ python3 -m pyperf stats outliers.json -q Total duration: 11.6 sec Start date: 2017-03-16 16:30:01 End date: 2017-03-16 16:30:16 Raw value minimum: 135 ms Raw value maximum: 197 ms
Number of calibration run: 1 Number of run with values: 20 Total number of run: 21
Number of warmup per run: 1 Number of value per run: 3 Loop iterations per value: 2^15 Total number of values: 60
Minimum: 4.12 us Median +- MAD: 4.25 us +- 0.05 us Mean +- std dev: 4.34 us +- 0.31 us Maximum: 6.02 us
0th percentile: 4.12 us (-5% of the mean) -- minimum 5th percentile: 4.15 us (-4% of the mean) 25th percentile: 4.21 us (-3% of the mean) -- Q1 50th percentile: 4.25 us (-2% of the mean) -- median 75th percentile: 4.30 us (-1% of the mean) -- Q3 95th percentile: 4.84 us (+12% of the mean) 100th percentile: 6.02 us (+39% of the mean) -- maximum
for loops in range_it: mydict['0'] mydict['100'] mydict['200'] mydict['300'] mydict['400'] mydict['500'] mydict['600'] mydict['700'] mydict['800'] mydict['900']
return pyperf.perf_counter() - t0
runner = pyperf.Runner() mydict = {str(k): k for k inrange(1000)} # inner-loops: dict[str] is duplicated 10 times runner.bench_time_func('dict[str]', bench_dict, mydict, inner_loops=10)